3 resultados para Ant

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human actions cause destruction and fragmentation of natural habitats, predisposing populations to loss of genetic diversity and inbreeding, which may further decrease their fitness and survival. Understanding these processes is a main concern in conservation genetics. Yet data from natural populations is scarce, particularly on invertebrates, owing to difficulties in measuring both fitness and inbreeding in the wild. Ants are social insects, and a prime example of an ecologically important group for which the effects of inbreeding remain largely unstudied. Social insects serve key roles in all terrestrial ecosystems, and the division of labor between the females in the colonies queens reproduce, workers tend to the developing brood probably is central to their ecological success. Sociality also has important implications for the effects of inbreeding. Despite their relative abundance, the effective population sizes of social insects tend to be small, owing to the low numbers of reproductive individuals relative to the numbers of sterile workers. This may subject social insects to loss of genetic diversity and subsequent inbreeding depression. Moreover, both the workers and queens can be inbred, with different and possibly multiplicative consequences. The aim of this study was to investigate causes and consequences of inbreeding in a natural population of ants. I used a combination of long-term field and genetic data from colonies of the narrow-headed ant Formica exsecta to examine dispersal, mating behavior and the occurrence of inbreeding, and its consequences on individual and colony traits. Mating in this species takes place in nuptial flights that have been assumed to be population-wide and panmictic. My results, however, show that dispersal is local, with queens establishing new colonies as close as 60 meters from their natal colony. Even though actual sib-mating was rare, individuals from different but related colonies pair, which causes the population to be inbred. Furthermore, multiple mates of queens were related to each other, which also indicates localized mating flights. Hence, known mechanisms of inbreeding avoidance, dispersal and multiple mating, were not effective in this population, as neither reduced inbreeding level of the future colony. Inbreeding had negative consequences both at the individual and colony level. A queen that has mated with a related male produces inbred workers, which impairs the colony s reproductive success. The inbred colonies were less productive and, specifically, produced fewer new queens, possibly owing to effects of inbreeding on the caste determination of female larvae. A striking finding was that males raised in colonies with inbred workers were smaller, which reflects an effect of the social environment as males, being haploid, cannot be inbred themselves. The queens produced in the inbred colonies, in contrast, were not smaller, but their immune response was up-regulated. Inbreeding had no effect on queen dispersal, but inbred queens had a lower probability of successfully founding a new colony. Ultimately, queens that survived through the colony founding phase had a shorter lifespan. This supports the idea that inbreeding imposes a genetic stress, leading to inbreeding depression on both the queen and the colony level. My results show that inbreeding can have profound consequences on insects in the wild, and that in social species the effects of inbreeding may be multiplicative and mediated through the diversity of the social environment, as well as the genetic makeup of the individuals themselves. This emphasizes the need to take into account all levels of organization when assessing the effects of genetic diversity in social animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social behaviour affects dispersal of animals and is an important modifier of genetic population structures. The female sex is often philopatric, which maintains coancestry within the breeding groups and promotes cooperative behaviours. This enables also inclusive fitness returns from altruism and explains why some individuals sacrifice personal reproduction for the good of others in social insects such as ants. However, reduced dispersal and population substructuring at the level of colonies may also entail inbreeding, loss of genetic diversity, and vulnerability. In addition, the most vulnerable ants are species that are evolved to parasitize colonies of other ants, and which compromise between abilities to disperse and the efficiency to parasitize the host. On the other hand, certain social organisations of ant colonies may facilitate a species to disperse outside its natural range and become a pest. Altogether, knowledge on genetic structuring of ant populations, as well as the evolution of their life histories can contribute to conservation biology and population management. The aim of this thesis was to investigate population structures and phylogenetic evolution of the ant Plagiolepis pygmaea and its two obligatory, workerless social parasites (inquilines) P. xene and P. grassei with genetic markers and DNA sequence data. The results support the general assumption that populations of inquiline parasites are highly fragmented and genetically vulnerable. Comparison of the two parasites suggests that differences in their relative abundance may follow from their interaction with the host, i.e. how well the species is adapted to reproduce in the host colonies. The results also indicate that the most recent free living ancestor to these two parasite species is their common host. This is considered to provide evidence for the controversial issue of sympatric speciation. Further, given that the level of adaptations to parasitic life history depends on the evolutionary time since the free-living ancestor, the results establish a link between species rarity and its evolutionary age. The populations of the host species P. pygmaea displayed significantly reduced dispersal both among the females (queens) and males, and high levels of inbreeding which may enhance worker altruism. In addition, the queens were found to mate with multiple males. Given the high relatedness between the queens and their mates, this occurs probably for non-genetic reasons, e.g. without benefits associated in genetically more diverse offspring. The results hence caution that the contribution of non-genetic factors to the prevailing mating patterns and genetic population structures should not be underestimated.